SPREADING OF A HORIZONTAL LAYER OF NON-NEWTONIAN LIQUID
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The flow of a layer of non-Newtonian liquid in an open volume is investigated
numerically.

Consider the flow of a free layer of non-Newtonian liquid over a plane horizontal sur-
face. Problems of this kind are encountered in the filling of vessels, leakage from reser-
voirs, the application of polymer coatings, etc. For large liquid volumes, the influence of
capillary forces is only large in very thin layers, and is small in ordinary conditions. With
slow flow of a highly viscous liquid, the characteristic time of velocity variation is con-
siderably greater than the time of stress relaxation [1], and the elastic properties of the
liquid do not appear in its spreading [2]. Therefore, the behavior of a liquid layer is de-
termined only by the character of the stress dependence of its viscosity. In the approxima-
tion of a geometrically thin layer (hg/Le << 1, where hy is the layer height, L, is the longi-
tudinal scale of flow), the change in form of the layer of non-Newtonian liquid is determined
by the equation [2]
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Equation (1) has a self-similar analytic solution describing axisymmetric spreading of
a fixed liquid volume [2]. The comparison in [3] of results of the calculation with experi-
mental data on the spreading of fixed volumes of several polyisobutylene solutions confirms
the possibility of using the equations for large times, In the present work, the motion of
a non-Newtonian liquid in a volume is numerically investigated. At the walls, the impenetra-
bility condition is imposed, where n is the vector normal

vh, -n = 0. (3)

The viscosity function ¥ is determined by a rheological model describing the behavior of
a non—~Newtonian liquid with shear flow. In the region of relatively low deformation rates,
the Ellis model gives good results [4]:
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For ’T/T;/;l >> 1, Eq. (4) reduces to the power law
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Equation (1) is solved numerically. Introducing the dimensionless quantities:

t=tyl, X =xL, YV = yLO, h=nhh t=1,71, ¥ =T,

Equations (1) and (2) are rewritten in the form

Belerussian Poelytechnical Institute, Minsk., Translated from Inzhenerno-Fizicheskii
Zhurnal, Vel. 48, No, 6, pp. 950-957, June, 1985. Original article submitted April 19, 1984.

0022-0841/85/4806-0689$09.50 © 1985 Plenum Publishing Corporation 689



TABLE 1, Spreading of Liquid Layer (simple alternation of

directions)
’ X
o0 0] o2]os]0s] o 0.6 | o7 | osfooe | 10
= 0,01

0,0 0,61 0,0{0,0 10,0 (0,0 0,0 0.0 0,0 !0,0 0,0} 0.0
0,1 ¢,0 1 0,0 |0,0 10,0 [0,0 0,0 0,0 0,0 [0,0 0,6 { 0,0
0,2 0,0 | 0,0 10,004{0,67910,784{ 0,801 0,784 10,679]/0,004} 0,0 | 0,0
0,3 0,0 | 0,0 |0,702/1,6551,761] 1,781 1,761 11,685/0,702| 0,0 | 0,0
0.4 0,0 { 0,0 {0,790 1,762{ 1,891 1,817 1,891 1,762{0,7901 0,0 | 0,0
0,5 0,0 { 0,0 [0,80411,782]1,917| 1,945 1,917 |1,782|0,804; 0,0 { 0,0
0,6 0,0 | 0,0 {0,790}1,762]1,891] 1,917 1,891 11.,762]0,790{ 0,0 { 0,0
0,7 0.0 | 0,0 {0,702}1,655]1,761{ 1,781 1,761 1,68510,702| 0.0 | 0,0
0,8 0,0 | 0,0 {0,004]0,679{0,784} 0,801 0,784 10,679[0,004] 0,0 | 0,0
6.9 6,6 { 0,0 {00 10,0 0,0 6,6 0,0 6.6 0,0 6.6 | 0.0
1,0 0.0 0,0 0,0 (0,0 {0,0 0,0 0,0 0,0 (0,0 0,0 | 0,0

TABLE 2, Spreading of a Layer of Non-Newtonian Liquid (Ellis
model, C = 1, a = 1,5)

1 X
| 0.0 | 0.1 | 0.2 | o3 | o4 | o5 | o5 | 0.7 | 0.8 | 0.0 |
= (,50; Ar =1,06-10-2

0,0 10.,356(0,377|0,431]0,49810,551 0,572 0,551 [0,4980,431]0,37710,256
0,1 {0,377]0,3990,456|0,52710,583! 0,605 0,583 [0,52710,456[0,399]0,377
0,2 10,431|0,45610,52210,602}0,667| 0,692 0,667 }0,602]0,522]0,456}0,431
0,3 }10,488{0,5270,6020,696({0,771 08,799 0,771 {0,696 0,602 0,52710,498
0.4 10,551(0,583{0,667(0,771[0,854| 0,885 0,854 10,771|0,667 (0,583 0,551
0,5 {0,572{0,605!0,692 0,799 0,885 0,918 0,885 10,79910,692(0,605}0,572
0,6 10,551]0,58310,667]0,77110,854| 0,885 0,854 (0,77110,667 0,583} 0,551
0,7 10,498{0,526]0,60210,696{0,771 0,799 0,771 {0,696]0,602{0,526]0,498
0,8 {0,431]0,456]0,52210,602]|0,667| 0,692 0,667 |0,602{0,522]0,456 | 0,431
0,9 10,37710,399190,456 | 0,527 | 0,5831 0,605 0,583 |0,52710,45610,399{0,377
1,0 10,356{0,37710,431(0,49810,551} 0,572 0,551 10,498i0,4310,377 0,356
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C= pghO/Lor te = noL3/pghs, and T, is the stress scale, The principal feature of the non-
Newtonlan 1iquid is that the function ¢ depends on the layer height h and the gradient ‘Vh]
Thus, for a Newtonian liquid ¢ = /5, while for the Ellis model

. A_L : 1 _ _ . -
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The method of directional splitting is used to solve Eq, (5) [5]. Two grid functions_are in-
treduced: for integer nodes of the grid, wijk = {tk, Xi, yj}; for semiinteger nodes, Wjjk =
{%441/2, ¥j+1/2s tkti/2}, In this case, Eq. (5) is divided in two, each describing spreading
along only a single axis (0X or OY)
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Tt ig evident that transition from the k-th to the (k +_l)~th time layer occurs using the in-
termediate time layer k + */,, i.e., a half time step Aty/2 is used in solving the problem.
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The integrointerpolational method of [6], which gives a conservative difference scheme, is
used to obtain Eq., (8). The given equations ensure conservation of the quantity

& _ Nyl Np—1 S Mot B
H = —2——2 (hadxibys+h; y Axdyy ) ¥ ¥ bbby +—— N (A Ay + hw,. ; Axy Ay),
i=1 i=2 j=2 < j=2

which is an analog of the volume of the spreading liquid layer, The mass~transfer coeffi-
cients Ek+li+1’j and Ek+li’j+1 are determined from the formulas [6]

RED 1 o Tamht]
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In calculating r at semiinteger nodes, the following expressions are used

- Rigy,; 4+ R ( oh ) ::hw+uj——ﬁﬁ
’ id1]2,;

Riyije,j= 9

Ox Ax; ’
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B _ P+ hy 5’1_\) _ R —hy ,
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( oh ) _ 71i+1,j+1 ’TLTZH—I,]' ‘“Ei~1,j _Ei~1,i+1
0% /i,jt+1/2 2 (Axi41— Axy)

The replacement of derivatives by difference ratios in this way results from the need to con-
struct symmetric formulas in terms of the variables x, y. At the boundary of the region, the
impenetrability conditions are specified

(aﬁ) :< aﬁ) ~O(aﬁ) _(aﬁ‘) 0
0% Jitiye,1 0x vtz n, N\ 09 Jiipr2 \OY Iwjrre

At the corners (x, ¥1), (1, yN),(g“' yﬂ,(an yN) both the derivatives are set equal to zero.

The system in Eq. (8) is nonlinear with respect to ﬁk+1i'. It is solin by §E+iterative
method, The iterative process, which refines the values of t%e functions E lij(h .
[th+ll) depending on the desired solution, is constructed by the following linearization of
Eq. (8),

R R BT @ M) — BT @M R,
where Ek+1’aij is the value of the a~th iteration, The value of the function in the preceding
time layer Ek+1’oij = ﬁkij is taken as the initial iteration, The difference scheme is linear

relative teo ﬁk*1=“ij. Systematic calculation of the iterations continues until
Th1, —h e
o> max if " * — R 9)
where € is the specified accuracy.

To reduce the time for numerical solution of the problem, automatic correction_of the
time step in the calculation ls performed. This allows the maximum possible step Aty to be
determined for the specified accuracy e. The correction proceeds as follows. If the number
of iteratiens Ny;p < Npin, the step is increased q times in a numerical progression, where
q = 1.01-1.05, When Nyp > Ngin but Nyp < Npid, the step is increased in an arithmetic pro-
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#s9;4, the first equation is

ternation of direction, the
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With simple a

Then, using h

The initial step is At,

(c), 4.0 (d).
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otherwise it is unchanged,

not converge for Nyuyy > Npax, the step is halved for the specifi

(8) is first solved.

Atkt, = Atk + 0,001At,;

Spreading of a cylinder of height h = 1.0 at the wall:

step Aty is bounded by the value Aty ~ Ax,., The gain in computation time depends strongly on the
degree of nonlinearity of the problem being solved, but amounts to a factor of 2-3 on average

in cemparison with the use of a constant step.

taken for Ngmin, Nmax, Nmid are 3, 15, 8.
second relation in Eq.

Fig. 2.
gression
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solved for Hk+l’aij. Next, the solution obtained is used as the iteration for the calcula-

tion of the new values of Ek+1’ai-, and the cycle is repeated. This scheme was used in [7]
to find the concentration distribution of the elements in diffusional processes, where they
gave good results in view of the weak nonlinearity of the problem (the diffusion coefficients
depend only on the concentration).

As a result of a series of model calculations, good conservation of the overall volume
of the liquid layer is established (the relative error is of the order of 0.17). Simultaneous-
ly, it is found that, with increase in computation time, the asymmetry in the laver-height dis-
tribution increases. Thus, in the spreading of a liquid parallelepiped at the center of a
square area of dimensions 1 x 1, the height distribution is asymmetric. The asymmetry in-
creases over time, reaching a maximum, and then decreases on account of smoothing of the
height difference. Table 1 gives the layer-height distribution for a Newtonian liquid with a
square Initial cross section. The computational time step is At ~ 107, It is evident that,
for the given initially symmetric problem, the height distribution is asymmetric even at time
t = 0,01, Thus, the use of the splitting method does not allow sufficiently large steps to be
used (At ~ 0,01). This constraint was also noted in [8].

To eliminate this deficiency of the splitting method, systematic variation in the alter-
nation of directions is applied. The solution obtained in the preceding time layer is taken
as the initial, zero iteration, Then the height distribution in the next half time step is
considered. It is the initial distribution for calculating the height in the (k + 1)-th
layer, The calculation of the (k + 1/2)-th layer proceeds along the axis 0X and that of the
(k + 1)~th layer along the axis 0Y. The solution obtained is the first approximation for the
subgsequent iterative process. However, in the next semiinteger time layer, the calculation
is not along 0X but along 0Y. The calculation of the (k + 1)-th layer changes correspondingly;
it proceeds along 0X. If the condition in Eq. (9) is not satisfied, the solution obtained is
used to calculate the coefficients E +1,ai4 and the iterative process 1s repeated. The itera-
tion is concluded after Eq. (9) is satisfied. In the course of all the calculations, regard-
less of the satisfaction of Eq. (9), systematic alternation of the directions for the integer
and semiinteger time layers is undertaken. The results of calculations by the given scheme
show that the form of the layer surface is practically symmetric. The relative error is no
greater than 0.17 for any time step AEk.

The variation of the layer height of the non-Newtonian liquid along the axis OX passing
through the midpoint of the area is shown in Fig. 1., The dependence of the tangential stress
on the velocity is described by Eq. (4) with C = 1 and ¢ = 1,0, It is evident that the vel-
ocity of spreading reduces over time because_of the decrease in the difference along the
layer, Table 2 gives height values at time t = 0.50 and the corresponding integration step.
The solution employs systematic alternation of the direction. It is evident that the height
distribution is symmetric., A liquid column of square form is gradually converted to a circle.
Filling of the corners of the volume by liquid occurs in the final stages. The spreading of
a cylinder under the action of its weight is shown in Fig. 2. The closeness of the volume
walls significantly influences the change in form of the layver (Fig. 2). For t > 1, motion
occurs basically from the wall. Up to time t = 4,00, it resembles the flow in the filling
of a volume through its side wall, part of which is removed at £t = 0.

The degree of non-Newtonian behavior of the liquid (« and the dimensionless complex C)
exerts a strong influence on the form of the spreading layer and its velocity of motion over
the surface, With identical values of o, increase in C is associated with decrease in the
stress t,, with constant scales ho, Lo, no. The influence of C on the spreading of a liquid
layer consisting of two cvlinders i1s shown in Fig. 3. It is evident that the spreading rate
increases with increase in C,
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Variation in a at constant C leads to change in form of the flow front of the layer: the
larger o, the steeper the fromt,.

The results of the calculations show that the use of the splitting method with systematic
variation in the alternation of the directions allows efficient difference schemes to be con-
structed for the solution of two-dimensional problems of the spreading of non-Newtonian liquid:
and allows sufficiently large time steps to be used.

NOTATION

h, layer height, m; t, time, sec; p, density, kg/m®; g, acceleration due to gravity, m/
sec?; 1, tangential stress, N/m?; n, viscosity, Paesec; Y, shear velocity, sec™'; hs, Lo,to,
height, length, and time scales; nes, greatest Newtonian viscosity; Ti/a, stress at which vis-
cosity is halved; tx, stress scale;n, «, indices of non-Newtonian behavior of liquid; ¥, vis-
cosity function.
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